
Public

SMART CONTRACT AUDIT REPORT

for

InsurAce Protocol

Prepared By: Yiqun Chen

PeckShield
July 12, 2021

1/26 PeckShield Audit Report #: 2021-193

sxwang@peckshield.com

Public

Document Properties

Client InsurAce
Title Smart Contract Audit Report
Target InsurAce
Version 1.0
Author Xuxian Jiang
Auditors Shulian Bie, Jing Wang, Xuxian Jiang
Reviewed by Yiqun Chen
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 July 12, 2021 Xuxian Jiang Final Release
1.0-rc1 July 11, 2021 Xuxian Jiang Release Candidate #1

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Yiqun Chen
Phone +86 183 5897 7782
Email contact@peckshield.com

2/26 PeckShield Audit Report #: 2021-193

Public

Contents

1 Introduction 4
1.1 About InsurAce . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 9

2 Findings 10
2.1 Summary . 10
2.2 Key Findings . 11

3 Detailed Results 12
3.1 Strengthened Signature in settleMultiChain2BSCBridge() 12
3.2 Lack Of Token Whitelisting for ClaimAssessor::stake() 13
3.3 Proper getClaimFeeAmount() Calculation . 14
3.4 Improved Validation Of proposeUnstake() . 15
3.5 Gas Optimization in removeStakersPoolDataByIndex() 16
3.6 Improved Sanity Checks For System Parameters . 17
3.7 Necessity of Single-Shot Initialization . 18
3.8 Redundant State And Code Removal . 19
3.9 Trust Issue of Admin Keys . 20
3.10 Funds Lockup in FeePool And ClaimSettlementPool 22

4 Conclusion 24

References 25

3/26 PeckShield Audit Report #: 2021-193

Public

1 | Introduction

Given the opportunity to review the InsurAce design document and related smart contract source
code, we outline in the report our systematic approach to evaluate potential security issues in the
smart contract implementation, expose possible semantic inconsistencies between smart contract code
and design document, and provide additional suggestions or recommendations for improvement. Our
results show that the given version of smart contracts can be further improved due to the presence
of several issues related to either security or performance. This document outlines our audit results.

1.1 About InsurAce

InsurAce is a leading decentralized insurance protocol, providing reliable, robust and secure insurance
services to DeFi users, allowing them to secure their investment funds against various risks. Being
the first in the industry to offer cross-chain portfolio-based covers, InsurAce enables users to get
unbeatable low premium. Users can also get sustainable investment returns through InsurAce’s
investment portal and gain rewards though the mining program. InsurAce has a live product launched
on Ethereum in April 2021 and on BSC in June 2021, have built a full-spectrum cross-chain insurance
product line, covering protocols, CEX and IDO platform running on Ethereum, Solana, BSC, Heco,
Polygon, Fantom and more in the future.

The basic information of InsurAce is as follows:

Table 1.1: Basic Information of InsurAce

Item Description
Issuer InsurAce

Website https://www.InsurAce.io
Type Ethereum Smart Contract

Platform Solidity
Audit Method Whitebox

Latest Audit Report July 12, 2021

4/26 PeckShield Audit Report #: 2021-193

Public

In the following, we show the compressed file smart-contracts-peckshield-review.zip and its
MD5/SHA checksum values:

• MD5: b8391013a1156318659e85e9ed47f313

• SHA256: 4bc2996b66ae6bba927ad6a79f4bb78fba9f7b611fe9cc2e2ec4b07fb0576bf8

And here are the checksum values after all fixes for the issues found in the audit have been
checked in:

• MD5: 3d716820badeaaf811348f2ffa8649e2

• SHA256: dc766210b8187eb7247130cc42144e8892510c5ca74f2a5be196546d960ae4bf

1.2 About PeckShield

PeckShield Inc. [13] is a leading blockchain security company with the goal of elevating the secu-
rity, privacy, and usability of current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [12]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

5/26 PeckShield Audit Report #: 2021-193

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a checklist of items and each would be labeled with a
severity category. For one check item, if our tool or analysis does not identify any issue, the contract
is considered safe regarding the check item. For any discovered issue, we might further deploy
contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [11], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings. Moreover, in case there is an issue that
may affect an active protocol that has been deployed, the public version of this report may omit
such issue, but will be amended with full details right after the affected protocol is upgraded with
respective fixes.

6/26 PeckShield Audit Report #: 2021-193

Public

Table 1.3: The Full Audit Checklist

Category Checklist Items

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead Of Transfer

Costly Loop
(Unsafe) Use Of Untrusted Libraries
(Unsafe) Use Of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
ERC20 Idiosyncrasies Handling
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

7/26 PeckShield Audit Report #: 2021-193

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/26 PeckShield Audit Report #: 2021-193

Public

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

9/26 PeckShield Audit Report #: 2021-193

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the implementation of the InsurAce protocol.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logic, examine system operations, and place DeFi-related aspects under scrutiny to
uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 1

Medium 3

Low 2

Informational 4

Total 10

We have so far identified a list of potential issues: some of them involve subtle corner cases that might
not be previously thought of, while others refer to unusual interactions among multiple contracts.
For each uncovered issue, we have therefore developed test cases for reasoning, reproduction, and/or
verification. After further analysis and internal discussion, we determined a few issues of varying
severities need to be brought up and paid more attention to, which are categorized in the above
table. More information can be found in the next subsection, and the detailed discussions of each of
them are in Section 3.

10/26 PeckShield Audit Report #: 2021-193

Public

2.2 Key Findings

Overall, these smart contracts are well-designed and engineered, though the implementation can be
improved by resolving the identified issues (shown in Table 2.1), including 1 high-severity vulnerability,
3medium-severity vulnerabilities, 2 low-severity vulnerabilities, and 4 informational recommendations.

Table 2.1: Key InsurAce Audit Findings

ID Severity Title Category Status
PVE-001 Low Strengthened Signature in settleMulti-

Chain2BSCBridge()
Business Logic Fixed

PVE-002 High Lack Of Token Whitelisting for
ClaimAssessor::stake()

Business Logic Fixed

PVE-003 Medium Proper getClaimFeeAmount() Calcula-
tion

Business Logic Fixed

PVE-004 Low Improved Validation Of proposeUn-
stake()

Coding Practices Fixed

PVE-005 Informational Gas Optimization in removeStaker-
sPoolDataByIndex()

Coding Practices Fixed

PVE-006 Informational Improved Sanity Checks For System
Parameters

Coding Practices Confirmed

PVE-007 Medium Necessity of Single-Shot Initialization Init. and Cleanup Confirmed
PVE-008 Informational Redundant State And Code Removal Coding Practices Fixed
PVE-009 Medium Trust Issue of Admin Keys Security Features Confirmed
PVE-010 Informational Funds Lockup in FeePool And Claim-

SettlementPool
Business Logic Confirmed

Beside the identified issues, we emphasize that for any user-facing applications and services, it is
always important to develop necessary risk-control mechanisms and make contingency plans, which
may need to be exercised before the mainnet deployment. The risk-control mechanisms should kick
in at the very moment when the contracts are being deployed on mainnet. Please refer to Section 3
for details.

11/26 PeckShield Audit Report #: 2021-193

Public

3 | Detailed Results

3.1 Strengthened Signature in settleMultiChain2BSCBridge()

• ID: PVE-001

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: BSCBridgePier

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [6]

Description

The InsurAce protocol has a built-in bridge functionality that allows for assets to move across var-
ious bridges. Using the BSCBridgePier as the example, each bridge implements two key functions
bridgeBSC2MultiChain() and settleMultiChain2BSCBridge(). The first one allows to lock the requested
assets so that they can cross the bridge to the intended chain while the second one performs the
reverse path by releasing the locked funds to the BSC chain.

While examining the asset movement across different bridges, we notice the following _checkSignature

() routine needs to be revised. As the name indicates, it validates the signature to ensure it is indeed
signed by the authorized singer. However, the way the signature is validated does not take into
account the current bridge contract information. As a result, if the bridge needs to be re-deployed
to another address, the previous valid signature may be replayed.

186 function _checkSignature(
187 address _tokenFrom ,
188 address _tokenTo ,
189 uint256 _amount ,
190 bytes32 _chainFrom ,
191 bytes32 _txHash ,
192 address _toAddress ,
193 uint8 v,
194 bytes32 r,
195 bytes32 s
196) internal view returns (bool) {

12/26 PeckShield Audit Report #: 2021-193

Public

197 bytes32 msgHash = keccak256(abi.encodePacked(_tokenFrom , _tokenTo , _amount ,
_chainFrom , _txHash , _toAddress));

198 bytes memory prefix = "\x19Ethereum Signed Message :\n32";
199 bytes32 prefixedHash = keccak256(abi.encodePacked(prefix , msgHash));
200 address signer = ecrecover(prefixedHash , v, r, s);
201 return settlementSignerFlagMap[signer];
202 }

Listing 3.1: BSCBridgePier::_checkSignature()

Recommendation In order to block possible signature replay attacks, there is a need to take
into account the current bridge address for the signature validation.

Status The issue has been fixed by including the current bridge address for the signature
generation and validation.

3.2 Lack Of Token Whitelisting for ClaimAssessor::stake()

• ID: PVE-002

• Severity: High

• Likelihood: Medium

• Impact: High

• Target: ClaimAssessor

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [6]

Description

The InsurAce protocol supports assessors to evaluate each claim and submit their assessments. The
various functions that can be exercised by assessors are mainly implemented in the ClaimAssessor

contract. In the following, we examine one specific function stake().
To elaborate, we show below its full implementation. This stake() function is designed to stake

the supported insurTokenAddress and increase the assessor’s voting power (measured in terms of
total staked amount). It comes to our attention that the staked amount is denominated at the given
insurTokenAddress, which unfortunately is not authenticated.

100 function stake(address insurTokenAddress , uint256 insurAmount) external payable
nonReentrant {

101 require(insurTokenAddress != address (0), "STK: 1");
102 require(insurAmount > 0, "STK: 2");
103
104 address payable assessor = _msgSender ();
105 IClaimReward(claimReward).recalculateAssessor(assessor);
106
107 IERC20Upgradeable(insurTokenAddress).safeTransferFrom(assessor , address(this),

insurAmount);
108 increaseVotes(assessor , insurAmount);

13/26 PeckShield Audit Report #: 2021-193

Public

109
110 emit AssessorStakeEvent(assessor , insurAmount);
111 }

Listing 3.2: ClaimAssessor::stake()

Note the unstake() counterpart shares the same issue.

Recommendation Whitelist the given insurTokenAddress so that only authenticated tokens
(e.g., INSUR) may be accepted for staking.

Status The issue has been fixed by ensuring only the intended INSUR token is used for staking
and unstaking.

3.3 Proper getClaimFeeAmount() Calculation

• ID: PVE-003

• Severity: Medium

• Likelihood: Medium

• Impact: Medium

• Target: Claim

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [6]

Description

The InsurAce protocol allows users to submit claims to recover possible loss. The various claim-related
functions are mainly implemented in the Claim contract. By design, each claim may be charged for
an associated claim fee and a helper routine getClaimFeeAmount() is provided to compute the claim
fee.

116 function getClaimFeeAmount(uint256 claimAmount) public view override returns (
uint256) {

117 return IClaimConfig(cfg).getComplainFeeRateX10000 ().mul(claimAmount).div (10**4);
118 }

Listing 3.3: Claim::getClaimFeeAmount()

To elaborate, we show above the related getClaimFeeAmount() routine. It comes to our attention
the claim fee rate is retrieved from the configuration using IClaimConfig(cfg).getComplainFeeRateX10000

(), which should be IClaimConfig(cfg).getClaimFeeRateX10000().

Recommendation Apply the right claim fee rate during the calculation of claim fee.

Status The issue has been fixed by using the right claim fee rate.

14/26 PeckShield Audit Report #: 2021-193

Public

3.4 Improved Validation Of proposeUnstake()

• ID: PVE-004

• Severity: Low

• Likelihood: Low

• Impact: Medium

• Target: StakingV2Controller

• Category: Coding Practices [8]

• CWE subcategory: CWE-561 [4]

Description

The InsurAce protocol has a core StakingV2Controller contract that provides the desired staking
feature. In particular, the staked funds have a lifecycle that is transitioned by the following functions:
stakeTokens(), proposeUnstake(), and withdrawTokens(). When examining these functions, we notice
the proposeUnstake() function can be improved.

To elaborate, we show below the full implementation. Within this function, there is an internal
variable proposeUnstakeLP. This variable has been assigned twice (lines 184 and 186). Note the first
assignment (line 184) is not necessary and the restriction on the proposed unstake amount is not
properly applied. Specifically, the current staked amount needs to be no less than the proposed
unstake amount, i.e., require(IStakersPoolV2(stakersPoolV2).getStakedAmountPT(_token)>= _amount),
instead of the current requirement require(IStakersPoolV2(stakersPoolV2).getStakedAmountPT(_token

)!= 0) (line 185).

180 function proposeUnstake(uint256 _amount , address _token) external override
nonReentrant whenNotPaused onlyAllowedToken(_token) {

181 require(minUnstakeAmtPT[_token] <= _amount && maxUnstakeAmtPT[_token] >= _amount
, "PU:1");

182 address lpToken = tokenToLPTokenMap[_token];
183 // eth/lpeth = constant = _amount/lpTokenAmount
184 uint256 proposeUnstakeLP = _amount;
185 require(IStakersPoolV2(stakersPoolV2).getStakedAmountPT(_token) != 0, "PU:2");
186 proposeUnstakeLP = _amount.mul(IERC20Upgradeable(lpToken).totalSupply ()).div(

IStakersPoolV2(stakersPoolV2).getStakedAmountPT(_token));
187 require(proposeUnstakeLP != 0, "PU:3");
188 ILPToken(lpToken).proposeToBurn(_msgSender (), proposeUnstakeLP , unstakeLockBlkPT

[_token]);
189 emit ProposeUnstakeEvent(_msgSender (), lpToken , proposeUnstakeLP);
190 }

Listing 3.4: StakingV2Controller::proposeUnstake()

Recommendation Remove the redundant assignment to proposeUnstakeLP and properly apply
the restriction on the proposed unstake amount.

Status The issue has been fixed by applying the above recommendation.

15/26 PeckShield Audit Report #: 2021-193

Public

3.5 Gas Optimization in removeStakersPoolDataByIndex()

• ID: PVE-005

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: CapitalPool

• Category: Business Logics [9]

• CWE subcategory: CWE-841 [6]

Description

The InsurAce protocol has an essential CapitalPool contract that holds funds to cover various claims.
For each token in CapitalPool, there are associated internal storage states in stakersTokenData and
stakersTokenDataMap. As there may have a number of tokens for inclusion, the contract provides
related helper routines.

While reviewing the associated helper routines, we notice the removal of certain element indexed
by index from the respective array could benefit from known best practice in reducing the gas
consumption.

265 f unc t i on r emoveStake r sPoo lDataBy Index (uint256 _index) ex te rna l onlyOwner {
266 r equ i r e (s take r sTokenData . l ength > _index , "RSPDBI :1") ;
267 address token = staker sTokenData [_index] ;
268 de le te stakersTokenDataMap [token] ;
269 s take r sTokenData [_index] = stake r sTokenData [s take r sTokenData . l ength − 1] ;
270 s take r sTokenData . pop () ;
271 }

Listing 3.5: CapitalPool :: removeStakersPoolDataByIndex()

The idea is that we could simply replace the element to be removed with the last element in the
array and pop() the last element out. This avoids unnecessary gas usage if the given _index happens
to be the last one in the array (line 203).

Recommendation Replace the element to be removed with the last element and pop() the last
element out.

Status The issue has been fixed by applying the above recommendation.

16/26 PeckShield Audit Report #: 2021-193

Public

3.6 Improved Sanity Checks For System Parameters

• ID: PVE-006

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Coding Practices [8]

• CWE subcategory: CWE-1126 [1]

Description

DeFi protocols typically have a number of system-wide parameters that can be dynamically configured
on demand. The InsurAce protocol is no exception. Specifically, if we examine the BSCBridgePier

contract, it has defined a number of protocol-wide risk parameters, e.g., capOfTokenAmtDuringInterval
and swapFeeBSC. In the following, we show an example routine that allows for their changes.

64 function setupOutTxIntervalAndCap(
65 uint256 _outTxInterval ,
66 uint256 _capOfTokenAmtDuringInterval ,
67 uint256 _minTokenAmtPerTx
68) external onlyOwner {
69 outTxInterval = _outTxInterval;
70 capOfTokenAmtDuringInterval = _capOfTokenAmtDuringInterval;
71 minTokenAmtPerTx = _minTokenAmtPerTx;
72 }
73
74 function setSwapFeeBSC(uint256 _swapFeeBSC , address payable _feeCollector) external

onlyOwner {
75 require(_feeCollector != address (0), "SSFE:1");
76 swapFeeBSC = _swapFeeBSC;
77 feeCollector = _feeCollector;
78 }
79
80 function setMultiChainAllowedTokenMapTo2From(
81 bytes32 _chainType ,
82 address _tokenFrom ,
83 address _tokenTo
84) external onlyOwner {
85 multiChainAllowedTokenMapTo2From[_chainType][_tokenTo] = _tokenFrom;
86 }

Listing 3.6: A number of setters in BSCBridgePier

Our result shows the update logic on the above parameters can be improved by applying more
rigorous sanity checks. Based on the current implementation, certain corner cases may lead to an
undesirable consequence. For example, an unlikely mis-configuration of a large swapFeeBSC parameter
will revert every single swap operation.

17/26 PeckShield Audit Report #: 2021-193

Public

Note the RewardController contract also defines a number of risk parameters and their setters

can also benefit from improved validation as well.

Recommendation Validate any changes regarding these system-wide parameters to ensure
they fall in an appropriate range. Also, consider emitting related events for external monitoring and
analytics tools.

Status The issue has been confirmed.

3.7 Necessity of Single-Shot Initialization

• ID: PVE-007

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple Contracts

• Category: Initialization and Cleanup [10]

• CWE subcategory: CWE-1188 [2]

Description

The InsurAce protocol has a number of contracts and many of them have a setup() function which
is used to set up a number of key parameters. Using the RewardController contract as an example,
its setup() function is used to configure a number of contract addresses, including smx, cover, claim
and stakingController. To facilitate our discussion, we show below the related code snippet.

65 function setup(
66 address _securityMatrixAddress ,
67 address _coverAddress ,
68 address _claimAddress ,
69 address _stakingControllerAddress ,
70 address _insur
71) external onlyOwner {
72 require(_securityMatrixAddress != address (0), "S:1");
73 require(_coverAddress != address (0), "S:2");
74 require(_claimAddress != address (0), "S:3");
75 require(_stakingControllerAddress != address (0), "S:4");
76 require(_insur != address (0), "S:5");
77 smx = _securityMatrixAddress;
78 cover = _coverAddress;
79 claim = _claimAddress;
80 stakingController = _stakingControllerAddress;
81 insur = _insur;
82 vestingDuration = 1;
83 }

Listing 3.7: RewardController::setup()

18/26 PeckShield Audit Report #: 2021-193

Public

Apparently the above logic only ensures the caller is authenticated and allowed by the system.
But it does not provide the guarantee that the setup() function can be called only once. Considering
multiple initializations could cause unexpected errors for the contract’s execution, we strongly suggest
to make sure setup() could only be called once.

The same issue is also applicable to other setup() routines in a number of contracts, including
LPToken, StakingV2Controller, ExchangeRate, ETHBridgePier, BSCBridgePier, HECOBridgePier, ETH2MultiChainVault
, Product, RewardController, PremiumPool, StakersPoolV2, etc.

Recommendation Consider the need of ensuring that the setup() function could only be called
once during the entire lifetime.

Status This issue has been confirmed. And the team clarifies the intention to keep it open as
of now, to allow flexibility of adding new features, and will surrender the ownership when things get
stabilized.

3.8 Redundant State And Code Removal

• ID: PVE-008

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: Multiple Contracts

• Category: Coding Practices [8]

• CWE subcategory: CWE-563 [5]

Description

The InsurAce protocol makes good use of a number of reference contracts, such as ERC20, SafeERC20
, SafeMath, and Address, to facilitate its code implementation and organization. For example, the
RewardController smart contract has so far imported at least five reference contracts. However, we
observe the inclusion of certain unused code or the presence of unnecessary redundancies that can
be safely removed.

For example, if we examine closely the ExchangeRate contract, there is a helper function getTokenToTokenAmount

(). As the name indicates, it is used to compute the token amount after conversion. However, we
notice the calculation can be simplified as the multiplication and division with the constant Constant

.MULTIPLIERX10E18) are effectively canceled out.

134 function getTokenToTokenAmount(
135 address _fromToken ,
136 address _toToken ,
137 uint256 _amount
138) external view override returns (uint256) {
139 /**

19/26 PeckShield Audit Report #: 2021-193

Public

140 1. from_token_exchange_rate => the exchange rate (from_token currency / base
currency)

141 2. to_token_exchange_rate => the exchange rate (to_token currency / base
currency)

142 3. basic_exchange_rate = from_token_exchange_rate / to_token_exchange_rate
143 4. target_amount = source_amount / source_decimal_multiplier * (

basic_exchange_rate) * target_decimal_multiplier
144 5. target_amount = source_amount * (10**18) / source_decimal_multiplier * (

basic_exchange_rate) * target_decimal_multiplier / (10**18)
145 6. target_amount = source_amount * (10**18) * target_decimal_multiplier * (

basic_exchange_rate) / source_decimal_multiplier / (10**18)
146 7. target_amount = source_amount * (10**18) * target_decimal_multiplier * (

from_token_exchange_rate / to_token_exchange_rate) /
source_decimal_multiplier / (10**18)

147 */
148 return _amount.mul(Constant.MULTIPLIERX10E18).mul(currencyDecimalMultiplierMap[

_toToken]).mul(currencyExchangeRateMap[_fromToken]).div(
currencyExchangeRateMap[_toToken]).div(currencyDecimalMultiplierMap[
_fromToken]).div(Constant.MULTIPLIERX10E18);

149 }

Listing 3.8: ExchangeRate::getTokenToTokenAmount()

Another similar cancel-out redundancy occurs in the ClaimReward::_getClaimAssessorRewardAmount

() function on the use of the mul(10**4) constant.

Recommendation Consider the removal of the redundant state (or code) with a simplified,
consistent implementation.

Status This issue has been fixed by removing redundant code and state.

3.9 Trust Issue of Admin Keys

• ID: PVE-009

• Severity: Medium

• Likelihood: Low

• Impact: High

• Target: Multiple Contracts

• Category: Security Features [7]

• CWE subcategory: CWE-287 [3]

Description

In the InsurAce protocol, there is a dedicated SecurityMatrix contract that manages the access to
all privileged functions. And this SecurityMatrix contract has a privileged owner account. This owner

account plays a critical role in governing and regulating the protocol-wide operations (e.g., set various
parameters and authorize signers for cover purchases). It also has the privilege to control or govern
the flow of assets managed by this protocol. Our analysis shows that the privileged account needs

20/26 PeckShield Audit Report #: 2021-193

Public

to be scrutinized. In the following, we show the privileged owner account as well as representative
privileged opeations.

258 function withdrawReward(uint256 amount) external override allowedCaller
whenNotPaused nonReentrant {

259 require(ICoverData(data).getTotalInsurTokenRewardAmount () >= amount , "WR: 1");
260 ICoverData(data).decreaseTotalInsurTokenRewardAmount(amount);
261 IERC20Upgradeable(insur).safeTransfer(_msgSender (), amount);
262 }

264 event UnlockCoverRewardEvent(address indexed owner , uint256 amount);

266 function unlockRewardByController(address _owner , address _to) external override
allowedCaller whenNotPaused nonReentrant returns (uint256) {

267 return _unlockReward(_owner , _to);
268 }

Listing 3.9: Cover::withdrawReward()/unlockRewardByController()

These privileged operations are mediated with a special modifier allowedCaller, which allows
flexible access control policies to be managed via SecurityMatrix. By doing so, the owner account
can conveniently configure the intended access control via the following setAllowdCallersPerCallee()

function in SecurityMatrix.

65 function setAllowdCallersPerCallee(address _callee , address [] memory _callers)
external onlyOwner {

66 require(_callers.length != 0, "SACPC:1");
67 // check if callee exist
68 if (allowedCallersArray[_callee]. length == 0) {
69 // not exist , so add callee
70 allowedCallees.push(_callee);
71 } else {
72 // if callee exist , then purge data
73 for (uint256 i = 0; i < allowedCallersArray[_callee]. length; i++) {
74 delete allowedCallersMap[_callee][allowedCallersArray[_callee][i]];
75 }
76 delete allowedCallersArray[_callee];
77 }
78 // and overwrite
79 for (uint256 index = 0; index < _callers.length; index ++) {
80 allowedCallersArray[_callee].push(_callers[index]);
81 allowedCallersMap[_callee][_callers[index]] = 1;
82 }
83 }

Listing 3.10: SecurityMatrix::setAllowdCallersPerCallee()

We understand the need of the privileged functions for contract maintenance, but at the same
time the extra power to the owner may also be a counter-party risk to the protocol users. It is
worrisome if the privileged owner account is a plain EOA account. Note that a multi-sig account

21/26 PeckShield Audit Report #: 2021-193

Public

could greatly alleviate this concern, though it is still far from perfect. Specifically, a better approach
is to eliminate the administration key concern by transferring the role to a community-governed DAO.

Recommendation Promptly transfer the privileged account to the intended DAO-like governance
contract. All changes to privileged operations may need to be mediated with necessary timelocks.
Eventually, activate the normal on-chain community-based governance life-cycle and ensure the in-
tended trustless nature and high-quality distributed governance.

Status This issue has been confirmed. The InsurAce team will consider moving to DAO
governance when the protocol becomes mature and stabilized in the near future.

3.10 Funds Lockup in FeePool And ClaimSettlementPool

• ID: PVE-010

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: FeePool, ClaimSettlementPool

• Category: Business Logic [9]

• CWE subcategory: CWE-841 [6]

Description

The InsurAce protocol defines a number of pools, including CapitalPool, FeePool, ClaimSettlementPool
, PremiumPool, and StakersPoolV2. While examining these pools, we notice that both FeePool and
ClaimSettlementPool can accept tokens, but there are no functions defined to take out the funds from
them.

To elaborate, we show below the FeePool contract. It supports the influx of fees in terms of
unstkFee, claimFee, and complainFee (via addUnstkFee(), addClaimFee(), and addComplainFee() respec-
tively). However, the fee is currently locked up on the contract. Additional functions need to be
defined to properly transfer the funds out for legitimate purposes, including the support of team
development and community engagement.

32 contract FeePool is OwnableUpgradeable , PausableUpgradeable , ReentrancyGuardUpgradeable ,
IFeePool {

33 using SafeERC20Upgradeable for IERC20Upgradeable;
34 using SafeMathUpgradeable for uint256;
35 using AddressUpgradeable for address;

37 receive () external payable {} // solhint -disable -line no -empty -blocks

39 function initializeFeePool () public initializer {
40 __Ownable_init ();
41 __Pausable_init ();
42 __ReentrancyGuard_init ();

22/26 PeckShield Audit Report #: 2021-193

Public

43 }

45 address public securityMatrix;

47 // token -> unstake fee
48 mapping(address => uint256) public unstkFee;
49 mapping(address => uint256) public claimFee;
50 mapping(address => uint256) public complainFee;

52 modifier allowedCaller () {
53 require ((SecurityMatrix(securityMatrix).isAllowdCaller(address(this), _msgSender

())) (_msgSender () == owner()), "allowedCaller");
54 _;
55 }

57 function setup(address _securityMatrix) external onlyOwner {
58 require(_securityMatrix != address (0), "S:1");
59 securityMatrix = _securityMatrix;
60 }

62 function addUnstkFee(address _token , uint256 _fee) external payable override
allowedCaller {

63 unstkFee[_token] = unstkFee[_token].add(_fee);
64 }

66 function addClaimFee(address _token , uint256 _fee) external payable override
allowedCaller {

67 claimFee[_token] = claimFee[_token].add(_fee);
68 }

70 function addComplainFee(address _token , uint256 _fee) external payable override
allowedCaller {

71 complainFee[_token] = complainFee[_token].add(_fee);
72 }
73 }

Listing 3.11: The FeePool contract

Recommendation Avoid funds to be locked up in FeePool and ClaimSettlementPool.

Status This issue has been confirmed. In particular, the fee and claim settlement pools are just
placeholders and there is a need to review and revise the token economics in the near future.

23/26 PeckShield Audit Report #: 2021-193

Public

4 | Conclusion

In this audit, we have analyzed the design and implementation of the InsurAce protocol. The system
presents a unique, robust offering as a leading non-custodial, multi-chain decentralized insurance
protocol, providing reliable, robust and secure insurance services to DeFi users and allowing them
to secure their investment funds against various risks. The current code base is well structured
and neatly organized, with considerable security measures implemented. Those identified issues are
promptly confirmed and fixed.

Moreover, we need to emphasize that Solidity-based smart contracts as a whole are still in
an early, but exciting stage of development. To improve this report, we greatly appreciate any
constructive feedbacks or suggestions, on our methodology, audit findings, or potential gaps in
scope/coverage.

24/26 PeckShield Audit Report #: 2021-193

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.

mitre.org/data/definitions/1126.html.

[2] MITRE. CWE-1188: Insecure Default Initialization of Resource. https://cwe.mitre.org/data/

definitions/1188.html.

[3] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[4] MITRE. CWE-561: Dead Code. https://cwe.mitre.org/data/definitions/561.html.

[5] MITRE. CWE-563: Assignment to Variable without Use. https://cwe.mitre.org/data/

definitions/563.html.

[6] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/

data/definitions/841.html.

[7] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[8] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[9] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/

840.html.

25/26 PeckShield Audit Report #: 2021-193

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1188.html
https://cwe.mitre.org/data/definitions/1188.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/561.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/563.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html

Public

[10] MITRE. CWE CATEGORY: Initialization and Cleanup Errors. https://cwe.mitre.org/data/

definitions/452.html.

[11] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.

html.

[12] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_

Rating_Methodology.

[13] PeckShield. PeckShield Inc. https://www.peckshield.com.

26/26 PeckShield Audit Report #: 2021-193

https://cwe.mitre.org/data/definitions/452.html
https://cwe.mitre.org/data/definitions/452.html
https://cwe.mitre.org/data/definitions/699.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About InsurAce
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	Detailed Results
	Strengthened Signature in settleMultiChain2BSCBridge()
	Lack Of Token Whitelisting for ClaimAssessor::stake()
	Proper getClaimFeeAmount() Calculation
	Improved Validation Of proposeUnstake()
	Gas Optimization in removeStakersPoolDataByIndex()
	Improved Sanity Checks For System Parameters
	Necessity of Single-Shot Initialization
	Redundant State And Code Removal
	Trust Issue of Admin Keys
	Funds Lockup in FeePool And ClaimSettlementPool

	Conclusion
	References

